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ABSTRACT
Let V' be the complementary in a compact Riemann surface V of a point
(or a finite set). In this paper are characterized the subfields, of the field
of meromorphic functions in V’, containing sufficient functions to verify a
factorization property, similar to that of the classical Weierstrass theorem.
It is also seen that the field generated by the Baker functions is not of
this type, and the problem is solved of determining the divisors, in V', of
the holomorphic functions admiting Weierstrass factorizations with Baker
functions as factors. As an application, a theorem is obtained character-
izing the infinite products, of meromorphic functions in ¥V with bounded

degree, which converge normally in V'.

1. Introduction, notations and preliminary results

Let V be a compact Riemann surface of genus g, oo be a point of V, and V' =
V — {oo}. Let (p,) be a sequence in V' converging in V to co. Then it is well
known that, for every n € N, there exists a holomorphic function f, in V', with a
simple zero at p, , without zeros in V' — {p,}, and such that [T ., f. converges
normally in V'. We shall call such a product, a Weierstrass product associated
with the sequence (p,), and the above statement will be expressed in short by
saying that the field M(V’), of meromorphic functions in V', verifies the WF
(abbreviation of Weierstrass factorization) property, i.e. for every sequence (p,)
as above there is a Weierstrass product with factors in M (V') associated with
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(prn). Furthermore, if V' is an open neighbourhood of oo in V with a coordinate
z such that z(co) = 0, and if the points p, belong to V, it is also known (see,
for instance, Baker [1]) that for every n € N, f, can be taken to be in V' —~ {oo}
of the form he?(1/#) with h meromorphic in V and P a polynomial. Therefore,
if K, is the field generated by all functions in V' of this form, K ., verifies the
WF property in V' too.

Consider now the subfields of K, , or in general of M()"), which also contain
sufficient functions to verify the WF property, and note that if X is such a field
then for every p € V', at least a function with divisor p must belong to K,
and that (if oo is not a Weierstrass point) the simplest subfield of A, verifying
this, is the field K, generated by the so-called Baker functions in V', i.e. the
functions of the above said type corresponding to polynomials P of degree < g
(see Cutillas [2]). These considerations together with the previous ones lead to
the following natural questions, in whose statement the expression “WF-field”
means a subfield of M (V') containing the field M (V) of meromorphic functions
in V, and verifying the WF property:

(1) Is Ko also a WF-field in V'?

(2) If the answer to (1) is negative, can we determine the Weierstrass products
with factors in K, (i.e. with Baker functions as factors)?

(3) Can we characterize all the WF-fields in V'?

The purpose of the authors in this paper is to study WF-fields and, in partic-
ular, to provide solutions to these problems. For instance, we shall see that the
answer to question (1) is negative by showing a certain condition on the sequence
(pn), which is equivalent to the existence of an associated Weierstrass product
with factors in K, and we shall characterize the WF-fields in V' by means of
a simple criterium, which also allows us to determine those among them which
are generated by functions with finite divisor (observe that every WF-field in V'
contains one of this type). Specifically, in Section 2 we prove that the existence
of an associated Weierstrass product ]_[ff:l fn , with factors in K, , is equiva-

1
)9t and we draw some

lent to the absolute convergence of the series > - | z(pn
interesting consequences from the hypothesis of the convergence of the analogous
series with exponent 1. Part of the obtained results are generalized later: on one
hand by allowing larger orders for the poles at oo of the dlog f,, and, on the
other, by considering pairs of sequences of positive finite divisors with bounded

degree in V', from which we deduce as an application a result characterizing the
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infinite products, of functions in M (V) with bounded degree, which converge
normally in V. Finally, in Section 3, some equivalent properties to that of being
a WF-field are shown: one of them justifying the terminology used, and the other
leading to the determination of all WF-fields in V' generated by functions with
finite divisor (by means of the exponentials of holomorphic functions belonging
to them and certain natural group homomorphisms), as well as to the proof that
there.is no minimal WF-field, after which we finish with a note remarking that
these results can be easily generalized to complementaries of arbitrary nonempty
finite subsets of V.

V, 0, V', Koo , Koo » M(V), M(V'), V and z will be as above. V' will be
V — {0}, and we shall suppose further that V is a coordinate disk with respect to
z (i.e. V is contained in a coordinate open neighbourhood of 0o, with coordinate
z, and z(V) is a closed disk in C). A coordinate disk in U, for any open
subset U of V which contains oo, will mean a coordinate disk, D, with respect
to z, centered at oo (in the obvious sense), and such that D is contained in U.

Goo s Goo and G(V') will be respectively the groups of functions in Ko, A oo
and M (V'), having finite divisor. Unless otherwise stated, we shall suppose that
oo is not a Weierstrass point and that the genus ¢ of V is > 0. For every open
subset U of V or any other Riemann surface, O(U) will be the ring of holomorphic
functions in U, M(U) the ring of meromorphic functions in U, and M*(U) the
multiplicative group of M (U).

Ai,...,Ag, B1,... By will be piecewise C1 curves in V' defining a canonical
system of generators for the fundamental group of V (following, for instance, the
terminology in Gunning [4]), and A will be the simply connected open subset of
V complementary of the union of these curves. We shall suppose without loss of
generality that the topological closure V of V is contained in A, and we shall put
A=A — {oo}.

For every nonvoid finite subset S of V, A(V — 8) will be O(V - S) n M(V),
and when we consider A(Y — S) (or any other space of holomorphic functions in
an open subset of a Riemann surface) as a topological space, the topology will
be that of the uniform convergence in compact subsets.

The following theorem, which will be useful later, is an easy consequence of
theorem 10 in Royden [7].

THEOREM 1.1: Let U be a nonvoid open subset of V, different from V, and S be a
finite subset of V — U containing exactly one point of each connected component.
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Then A(V — S) is dense in O(U).

As we have said in the Introduction, there is a long-time generalization of the
Weierstrass factorization theorem, for holomorphic functions in V' (which seems
to have been proved for the first time by Giinther [5]), in which the elementary
factors of the complex plane version are replaced by functions having singularities
of polynomic exponential type at oo (i.e. functions of G..). Besides the paper
of Giinther, and the said book of Baker, a more modern proof can be either seen
later in Section 3, since it is a particular case of an implication in a theorem char-
acterizing WF-fields which will appear there, or obtained directly from Theorem
1.1 by reasoning as in that theorem. This result will be utilized in Section 2, and
can be stated in the following way:

THEOREM 1.2: Ko is a WF-field in V'.

2. Weierstrass products with factors in K

First, we explain some more terminology to be used from now on.

Definition 2.1: Given a sequence (p,) in V' converging in V to oo, consider the
positive infinite divisor in V', § = Y oo | p,. A Weierstrass product associated
with & will be an infinite product normally convergent in V' of the type []>o; fn,
where f, is, for every n € N, a function in O(V’) having p,, as divisor.

A Weierstrass product with factors in a subfield K of M (]‘/’ ) will be a product

1,2, fa as above such that all the functions f, belong to K.

Note that, with the notation of this definition, a Weierstrass product associated
with 4 is the same as a Weierstrass product associated with the sequence (p,) in
the sense of Section 1.

We also recall, since it seems to be not totally standard, the following definition:

Given an infinite product H;‘;l F,, of meromorphic functions F,, in some
Riemann surface W, it is said to be normally convergent in W, if for every
compact subset K of W there exists ng € N such that:

(1) If n > ng, then F;, has no pole in K and ||F;, — 1|| < 1, with the habitual
notation denoting the supreme norm.

(2) onin, log(Fu)llx < +oo, where log(F,) represents the principal branch
of the logarithm of F,, (i.e. the branch whose imaginary part takes values in

(—m,m)).
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In order to study Weierstrass products, it will be convenient, as we shall see
later, to consider convergent series of differentials.

Given a series Z;’il 0;, where the 8; are meromorphic differentials in W, with
W as above, we shall say that it converges normally in W (resp. uniformly in
compact subsets of W) if for every compact subset K of any coordinate open
subset W of W, with coordinate w, there exists jo € N such that §; has no
pole in & for every j > jo, and such that Y 2.
Y9, 03 /dw converges uniformly in K), where of course 6;/dw represents the
meromorphic function h; such that 8; = h;dw in W.

16;/dw]|,, converges (resp.

We shall also use the analogous terminology for infinite series of functions.
The following conventions will be useful for the sake of simplicity. It will be

always evident that they mean no loss of generality.

WARNING 2.2:

(1) In the sequel, whenever we consider a series having possibly a finite number
of undefined terms (for instance y o , z(pn), With (p,) as in Definition 2.1)
and we say that this series converges in some sense, it must be understood
that by getting rid of that finite set of terms, the resulting series converges
in the indicated way. The same will be valid for infinite products.

(2) Every infinite divisor in V' (resp. every sequence of finite divisors in V
tending to oo, in the obvious sense) will be supposed, if necessary, to be
supported (resp. to have all its terms supported) in V.

Let us consider again a sequence (p,) as in Definition 2.1, and the divisor
in V', 6§ =35>  p,. We want to study in this section the problem of finding
out, among all possible sequences (p,), those for which there exists a Weierstrass
product, with factors in K, associated with the corresponding 6. We begin with
an observation, which is trivial, but will be fundamental.

Remark 2.3: Let § =Y > | p, be as above, and ¢ be a function in O(V) having
a zero of order > £ € N, at co. If oo |2(pn)|¢ converges, then the same is true
for 3071 [6(pa)l-

As a consequence, the condition on the series Y .-, 2(ps), of being absolutely
convergent, is independent of V and z (if V and z are as in the Introduction).

The next proposition is useful for simplifying proofs of existence of Weierstrass

products. In its statement and often in the sequel, we shall utilize, for a cer-
tain type of function, the denomination introduced, for brevity reasons, in the
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following:

Definition 2.4: Given a function f € M(V'), we shall say that it is A-simple,
if its divisor is supported in A (i.e., all its zeros and poles are in A), and if the

integrals of dlog f along Ay,..., 4,4, By, ..., By are nullL.

PROPOSITION 2.5: If [[77 | f. converges normally in V', with f, € G(V') for
every n € N, then there exists ng € N such that for every n > ng, f, is a

A-simple function.

Proof: Let f € M(V') be the uniform limit on compact subsets of V' of the
sequence (H;;l fj)- We can suppose without loss of generality that the divisor
of f is supported in A’, and that the same is true for all functions f,. Then, since
/ A, dlog f and [ 4, dlog f,, are, for every n € N, integral multiples of 27i, and
since [ 4, dlog f coincide with the sum of the series St 4, dlog fr, for j =
1,...,9, one deduces easily that all except possibly a finite number of summands
in this series are zero. Being, finally, the same reasoning evidently valid for the

curves Bj, the proof is finished. [ ]

Before stating a first auxiliary result, it is convenient to explain some more
notation:

{wi,...,wy} will be a basis of the space of holomorphic differentials in V
verifying [, w; = d&;; (Kronecker’s delta).

For j =1,...,g, #; will be the unique holomorphic differential in V' such that
0;—dz/27*! is holomorphic in V, and such that [, 6; =0, forevery £=1,....g.

For every pair a, b of points in A, #,, will be the normal differential of the third
kind associated with a,b, and with the system of curves A,,..., 44, By,..., Bg;
i.e. 844 is holomorphic in V — {a, b}, has simple poles at a,b with residues 1, -1,

respectively, and fAz B =0,forf=1,...,9.
Consider now the functions ¢, of p € A’, defined for £ =1,...,g, by

1 9 P
¢e(p)_2_7ri/]3‘ poo—/oowf

(see, for instance, Farkas—Kra [3]), where the integral with limits co and p is taken
along a curve in A. The last equality implies that each one of these functions can
be also considered as a holomorphic function in A taking the value 0 at co. Let
@j: A" — Cbe, for j =1,...,9, such that fpe + 3_7_, ;(p)¢; has null integrals
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along By, ..., By, for every p € A’. Then, integrating along By, one has:

g
(2.5.1) 2mice(p) + Y _ #;(p) / 0; =0,
j=1 B
for £ = 1,...,9. Hence, since the matrix with coefficients f B, 0; is invertible
because of our assumption on the point oo, we deduce that ¢, ..., p, are likewise

holomorphic functions in A with a zero at oo (they form, as well as the functions
b1,..., ¢4, a set of g linearly independent integrals of the first kind in A, in the
classical sense).

Note also, for later use, that if p is a point of A" and if f, is a A-simple function

in G, with divisor p, then with the notation of above,

g
(2.5.2) dlog fp = bpoc + Z ©;(p)0;.

1=1

LEMMA 2.6: Foreveryj € {1,...,g}, the sum p;+2’ has a zero of order > g+1

27
/ 0; = —Agj-1,
B, J

where A¢;_1 is, for £ =1,...,9 and j € N, the coefficient of z/=! in the Taylor

at oo.

Proof: Since

series of we/dz in V (see, for instance, Farkas—Kra [3]), the equality 2.5.1 can be

rewritten as:

Mo A A\ T
1 1 2 g d1
(2.6.1) = : : . :
Py M .)lg;l %/\9’9—1 g
1 2 g

Note now that, for £ = 1,...,g, the coefficients of the ¢-th row of the square

matrix whose inverse appears in this equality are precisely the coefficients of

z,2%,...,29 in the Taylor series of ¢, at 0o, whence we easily deduce that both
members of 2.6.1 are of the form:

2+ 29t hy

29+ 29 by

for some hy,...,hy € O(V). [ |
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LEMMA 2.7: Let § = Y )7 p, be a positive infinite divisor in V' such that
S 2(pn)9t! converges absolutely, and let f, be a A-simple function in G
with p, as divisor for every n € N, If D is a coordinate disk in V' and if h is
a holomorphic function in a neighbourhood of D having a zero at oo, then the

series ) o, [o, hdlog f, converges absolutely too.
Proof: By 2.5.2,

g
dlog fr = 0p,c0 + Y ¢ (pn)b5,
j=1

and so, assuming if necessary that all the p,, are in D,

g dfh
Z/ hdlogfn—2mz (pn) ,327 00);(pn) | »

and by Remark 2.3 and Lemma 2.6, the hypothesis on ¢ implies that this last
series converges absolutely if and only if the series

= b, z(pn)
h(pn) — )  ——(c0)—=
2 | Hon) = 2 T e

does.
Observe now that _ '
I dih, | 2
—_— w —
is precisely the initial polynomial of degree g in the Taylor series of k at oo, from
which, again by our assumption on the convergence of 3 oo, z(p,)?*! and by
Remark 2.3, one obtains the desired conclusion. ]

Remark 2.8: It is convenient to choose a point py € V — V, fixed from now on,
in order to have the possibility of normalizing functions and differentials in V' by
imposing on them, respectively, the conditions of taking the value 1 and having
a zero at pg. We shall also suppose, since it will be useful later, that pg is not a
Weierstrass point.

LEMMA 2.9: Given f; € O(W — {oc}), for some open neighbourhood W of co,
there exists f € O(V' — {po}), having a pole of order < g at py (or no pole), and
such that f — f, has no singularity at oco.
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Proof: Let O be the sheaf of holomorphic functions in V, O’ be the sheaf on
V whose sections in every open subset U of V are the holomorphic functions in
U — {po, o0}, and consider the exact sequence of sheaves:

0—-0—0 - F—0,

where the second arrow represents the homomorphism defined by restriction of
functions, and F is the quotient sheaf O'/O. Then, since H*(V,0’') = 0, one
obtains from the corresponding cohomology exact sequence that:

0—-C—T(V,0)—>T(V,F)— H'(V,0) -0,

where we have used the standard notations. Let now u be a coordinate in some
open neighbourhood of pg such that u(pg) = 0, and note that the quotient classes
inT(V, F)/Im(T(V, 0")) of the g sections of F in V whose values at pp are defined
by the germs of 1/u,1/u?,...,1/u9, and whose values at co are all 0, are linearly
independent over C because of the election of ps as a non-Weierstrass point.
Hence, these classes span the said quotient space (take into account that the
dimension over C of HY(V,0) is g}, from which results easily the conclusion of

the statement. ]

Let U and D be coordinate disks in V, with U C D, and let i be the comple-
mentary in V of U. Let f be a holomorphic function in I, and 6 be a holomorphic
differential in D — {oo}. As usual, we shall represent with the notation (f,6) the
pairing of f and 6 given by f aD, f6, where D; is another coordinate disk in D
such that U C D; (and, of course, the integral is independent of the D; con-
sidered verifying these conditions). We shall also use the analogous notation
(w, h) in order to denote the similarly defined pairing of w € Q(U) (the space of
holomorphic differentials in ¢) and a holomorphic function h in D — {oo}.

Let Og(U) be the subspace of O(U) formed by the functions with a zero at po,
and Qo(lf) be the subspace of Q) defined by the differentials with a zero of
order > g at pg. The following lemma related with these spaces is a consequence
of corollary 2 of theorem 9 in Royden [7]. In its statement, and in the sequel when
necessary, we consider Qo(U) (and also Oy(I)) as a topological vector space, with
the topology of uniform convergence in compact subsets of U. Since it is linearly
and topologically isomorphic to O(U), with its analogous natural topology, it is

a nuclear locally convex space.
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LeMMa 2.10: IfU and U are as above, for every continuous linear functional ¢:
on Qo (), there exists a holomorphic function h in some open neighbourhood of

U, vanishing at oo, and such that ¥(w) = (w, k) for every w € Qo(U).

Proof: Let wp be a holomorphic differential in V', without zeros in V' —{py }, and
with a zero of order g — 1 at pp, and consider the linear topological isomorphism
T, from Oy (i) onto Q(U), given by the multiplication by wp. By the mentioned
theorem of Royden, there exists a coordinate disk D in V, with U € D, and a
holomorphic differential 4 in D such that if w € Qo(Uf}, then

Y(w) = (Yo T){w/wo) = (w/wo,8) = (w,8/wo).

Apply now Lemma 2.9 to f; = 6/wg in order to obtain f € O(V' — {po}), with
possibly a pole of order < g at pp, and such that h = f + 6/wg vanishes at oo,
and note that by the residue theorem it is also true that ¥(w) = (w, h) for every
w € Qo(U). |

o0

To obtain, from convergent series ) -~ ; dlog f,,, with f, € M(V'}, convergent
products [[7., fn, that is, to choose the multiplicative constant corresponding
to each f, in such a way that [[,_, f, converges, it is useful to introduce the

following:

Definition 2.11: We shall say that a function f € M(V’), having no zero or pole
at the point pg, is normalized, if f(po) = 1.

If f has a zero or a pole at pg, we require no condition on f to be normalized,
i.e. every such f is normalized.

Observe that if [] -, f. converges normally in V', with f, € M (V') for every
7 € N, then the last possibility in this definition can only hold for a finite number
of factors.

If f is a normalized A-simple function in G, which has all its zeros and all
its poles in A — {po}, then f is uniquely determined by its divisor. Note also
that if Y~ | dlog fn converges normally in V', with f, € M(}') normalized for
every n € N, then []°7, f converges normally in V' too.

THEOREM 2.12: Let § = Y .-, pn be a positive infinite divisor in V', and, for
every n € N, let f, be a normalized A-simple function in G, with p, as divisor.
Then, the following conditions on § are equivalent:

(1) >°2° 1 z(pn)9*! is absolutely convergent.
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(2) The product []_, f, converges normally in V'.
(3) There exists a Weierstrass product associated with § with factors in K.

Proof:  (1)=-(2). It is sufficient to see that Y -, dlog f, converges normally
in every open subset U of V' defined as in Lemma 2.10. Let ¢, be. for every
n € N, a holomorphic differential in V such that dlog f, + {, has at pg a zero of
order > g. Then, there exists ng € N such that dlog f,, + (. € Qo(U), for every
n > ng. By Lemmas 2.7 and 2.10, Z;’o:no P(dlog f, + () converges absolutely
for every continuous linear functional ¥ in Qq(Uf), and so, since this locally convex
space is nuclear, we deduce (see for instance proposition 4.2.2 in Pietsch [6]) that
Zflo:no dlog f. + ¢, converges normally in U, from which it results, as is easily
seen, that the same holds for > > dlog f, (consider the vector in C? whose
components are the integrals of dlog f. + (, along Ai,..., Ay, and take into
account that , is a linear combination with coefficients in C of w;, ..., wy, for
every n € N, where wy,...,w, are as explained just after Proposition 2.5).

(2)=(3). Evident.

(3)=>(1). Suppose that [],>, F,, is a Weierstrass product associated with 4
with factors in K. By Proposition 2.5, and getting rid if necessary of some
of them, we can suppose that all the functions F, are A-simple. Therefore, by
2.5.2, one has in A: ,

dlog F = 8p,00 + Y _ 0(Pn)05,
j=1
whence, by multiplying by 29%! and integrating along 0D, where D is a

coordinate disk in V, we obtain that the series

Z/ z~"+1dloan:27n’Zz(pn)g+1
n=1v98D n=1

is absolutely convergent. |

Let (pn) be as above. Then, since the convergence of Y > ; |2(p,)[9™" is, as
we have seen, an equivalent condition to the existence of a Weierstrass product
with factors in K, associated with (p,), it seems natural to investigate the
convergence of similar series with lower values of the exponent. Let f,, be as in
Theorem 2.12, and P, (1/z) be, for every n € N, the unique polynomial in 1/z,
without independent term, such that f, = f,ef»(/2), for some f, € M (V) (we
can call P,(1/z) the singularity exponent polynomial of f,). Then,

diog f, = dlog fo ~ 5 PA(1/2)d.
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and comparing with 2.5.2 (with p = p,,), we deduce that:
Po(1/2) = (sm(pn) 2(pr) sog(pn)>

* _2—22— ot gz9
Note as a consequence that, by Lemma, 2.6, the series of the singularity exponent
polynomials of the f, may not converge absolutely coeflicientwise despite the
normal convergence in V' of [[°, fn. In fact, this lemma shows that for each
j fixed in {1,...,g}, the series of the coefficients of 1/27 in these polynomials
converges absolutely if and only if > | |2(p,)|’ does. The following corollary
presents several conditions equivalent to the convergence of this last series for

the value 1 of j.

COROLLARY 2.13: Let § and f, be as in the theorem. Then, the following
conditions on § are equivalent:

() Yoo 1z(pn) is absolutely convergent.

(2) 372, 0,00 converges normally in V'.

(3) The series Y oo, fB b.oo 15 absolutely convergent, for j =1,...,9.

(4) The series 3 >~ ; <p]( n) is absolutely convergent, for j =1,...,g.

(5) Each series of coefficients of the singularity exponent polynomials of the f,

is absolutely convergent.

Furthermore, any of these conditions implies that [[>7; f» converges normally
in V.
Proof: (1)=>(2). Theorem 2.12 implies that [],; f» converges normally in V',
and, by Lemma 2.6 and Remark 2.3, Y -0, [¢;(pn)] < +oo, for j = 1,...,g.
Therefore, by 2.5.2, > | 8, converges normally in V'

(2)=(3). Evident.

(3)=(4). By 2.5.1.

(4)=(5) and (5)=-(1). See the observations previous to this corollary. |

Note that although we had made the assumption that ¢ > 0, Theorem 2.12
is true for g = 0, and reduces in this case to the trivial equivalence, for a di-
vergent sequence (a,) in C, between the condition Y 1/|a,| < +o00, with the
sum extended to the nonzero terms of (a,), and the condition that the product
[152; An(z — an) converges normally in C, for some sequence (A,) in C*. The
following generalization of Theorem 2.12 deals with Weierstrass products having
factors with singularity exponent polynomials of larger degree than g, and also

generalizes a well known result in the case g = 0.
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THEOREM 2.14: Let § be as in Theorem 2.12, and £ € N be > g. Then:

(1) The series 5 oo 2(pn)*™" converges absolutely if and only if there exists
a Weierstrass product [[0, f. associated with &, with f, € Ko having
singularity exponent polynomial of degree < ¢ for every n € N.

(2) If any of the conditions in (1) holds, the singularity exponent polynomial
of f,, can be chosen to be of the form

Z(pn)g-H .. Z(pn)[

Qn(1/2) + Ggrnzm Tt T

where Q., is a polynomial of degree < g, for every n € N.

Proof: (1) If there is a Weierstrass product as in the statement, then by reason-
ing as in the proof of (3)=>(1) in Theorem 2.12, one deduces that Y oo, |z(pn)|**!
< +00.

Conversely, assume the convergence of this series and observe that as the case,
¢ = g, is part of Theorem 2.12, we can also suppose that £ > g+ 1. Consider a A-
simple function F,, € G having p, as divisor, and let H,, € A(V') (notation as in
Theorem 1.1) be, for every n € N, such that [[07, E,ef» converges normally in
V' (which exists by Theorem 1.2). Use now, for instance, the Riemann-Roch the-
orem to obtain h,, € A(V') such that the coefficients of 1/29+1,1/29+2 ... 1/z2¢
in its Laurent series in V’ vanish, and such that ordy (H, — hn) > —¢, and note
that the proof will be finished if we see that Y - ; h, converges normally in V'.
By the theorem of Royden used in the proof of Lemma 2.10, it will suffice to
demonstrate that if o is any holomorphic function in some coordinate disk W
in V, with a zero of order > ¢ at oo, and if D is a coordinate disk in W, then
ZZO=1 /. ap nadz converges absolutely. This is clear if « is of the particular form
27, with g < § < € — 1, because of the assumption on the coefficient of 1/2/+! in
the Laurent series of h,, (which coincides save for the factor z-- with [, hn27dz),
and so we can reason assuming, further, that o has a zero of order > ¢ at oo.
Let W and D be as above for the considered a, and let 3 € O(W), with a zero
of order > £+ 1 at oo, be such that d3/dz = a. Then,

/ hpadz = — Bdh,, = 2miB(pn) — / B(dH, + dlog F,),
aD aD aD

where the first equality is an integration by parts and the other is a consequence of
the coincidence of the coefficients of dz/2z7 in the Laurent series in V' of dh,, and of
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dlog F,,+dH,, for every j > £+1. Finally, take into account that the convergence
of [1,2, Fne" implies the absolute convergence of Yo" | [5 . 3(dH, +dlog Fy),
and that > | |3(p,)| converges by Remark 2.3, in order to obtain the desired

conclusion.

Proof of (2): From Y oo | {z(pn)|*T! < +00. one deduces, as in the usual proof

of the classical Weierstrass factorization theorem, that if

— z 2pn) , z(pn)? 2(pn)?
A

then Hflo:l?n converges normally in V'. Hence, dlogf, — dlogf, being
holomorphic in V', it follows that if D is a coordinate disk in V, then
S Jop 2 (dlog f,, — dlog f,) converges absolutely for every j € N, whence
we obtain that the series of the coefficients of z7 in the singularity exponent
polynomials of the £, , and the analogous series for the f,, differ in an absolutely
convergent one, say y -, ftjn, for every j € N. Finally, to finish the proof, note
that if h; € A(V’) has singular part equal to 1/27 at oo, for g +1 < j < ¢, then

S | ijnh; converges normally in V'. |

Besides the generalization provided by Theorem 2.14, we want also to gener-
alize partially Theorem 2.12 and Corollary 2.13, by considering more than one
sequence, of the type of the (p,) of above, in order to obtain, as an application,
a result characterizing the infinite products, of functions in M (V) with bounded
degree, which converge normally in V’. First note that, up to now, we have al-
ways considered a sequence of points in V'; that is, we have supposed that each
one of these points is different from co. Of course, the differential 0, ., and the
normalized function f, (= f,) appearing in the statements of Theorem 2.12 and
Corollary 2.13 seem to have no meaning when p, = 0o, but we can adopt the
arrangement that 6., = 0 and that fo, = 1 (justified by the fact that for every
sequence (a,) in V' converging to oo, the corresponding sequences (0, 0) and
(fa,) converge uniformly in compact subsets of V', respectively to 0 and 1, as is
not very hard to check). With this arrangement, if we extend in the obvious way
the definition of Weierstrass products, the correctness of the following becomes

evident:

Remark 2.15: For a sequence (p,,) of points in V converging to oo, the analogous
conclusions to those of Theorem 2.12 and Corollary 2.13 also hold.
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The above-referred useful generalization for proving a result about infinite
products of functions in M (V), consists in replacing the sequence of points (p,)
by a sequence of finite divisors. Given k € N, let D be the set of divisors in
V of the form a; + - + a,, with ay,...,a, € V and r < k, and let oy,...,0%
be the functions defined, for every d = a; +---+a, € Dy and for £ = 1,...,k,
by o4(d) = z(a1)® + - -+ + z(a,)*. Then, the subset of D formed by the divisors
of degree k can be considered as the k-th symmetric product V(*), and can be
naturally endowed with a k-dimensional complex manifold structure, being well
known that in this manifold the functions o1,...,0 are coordinates, i.e. the
restriction to V(¥) of the mapping ['y: Dy — C*, with components a4, ..., 0, is
a holomorphic isomorphism of V(*) with an open subset of C* (see, for instance,
Gunning [4]).

If we denote by Dy the set of divisors of the type § = d — d’, with d,d’ €
Dy, we shall also set 04(8) = oo(d) — o4(d’), for ¢ = 1,...,k, and T'x(§) =
(61(8),...,05(d)) € C*. The following notation will be used too: for every such
d=d-d,iffd=a,+---+a, and d = by +---+b;, then 85, will denote briefly
Buroot 04,00 — (B0 ++++0b,00), and for every ¢ € O(V¥) and ¢ € O(V),
we shall also represent by ¢ and ¢ their naturally defined extensions to Dy, i.e.
6(6) = 6 (d+ (k= )oc) — & (d + (k — 5)00) and (6) = w(ar) + -+« + p(a,) -
(@(b1) + - -+ @(bs)), with § as above.

Let (6,) be a sequence in Dy tending to oo (in the sense of (2) in Warning 2.2),
and note that since the convergence of Y -, ||[['x(6,)|| (where || || denotes, for
instance, the usual norm in C*) implies the convergence of 302 | |#(3,,)] for every
holomorphic function ¢ in V*) having a zero at koo (and hence the convergence
of 3°>° , |¢(8x)] for every ¢ € O(V) vanishing at 0o), then by applying the same
device as in the proofs of Theorem 2.12 and Corollary 2.13, one can demonstrate
without difficulty the following;:

THEOREM 2.16: Let (d,) be a sequence in Dy tending to oo. If fs, is the
normalized A-simple function in G having as divisor the restriction of 6, to V',
then the following conditions are equivalent:
S L ITk(8,)| is convergent.
2) S0 05,00 converges normally in V',

(1)
(2)
(3) The series y >, | B 05, 0 is absolutely convergent, for j =1,...,g.
(4) The series Y > | ap]( n) is absolutely convergent, for j =1,...,g.
(5)

5) Each series of coefficients of the singularity exponent polyn0m1als (in a
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sense similar to that of Corollary 2.11) of the f5_ is absolutely convergent.

[e o}

Furthermore, any of these conditions implies that [, fs, converges normally

inV.

In the particular case in which the §,, are principal divisors in V, one can study,
with the help of Theorem 2.16, the convergence of certain products of functions
in M(V). Note, for later use, that if 4 is the divisor of a function o € M(V), and
is supported in A, then

g
(2.16.1) dloga = 0500 + Y (/A dloga) wj.

i=1

In particular, if we assume further that « is A-simple, then

(2.16.2) dloga = bOs500.

THEOREM 2.17: Let (a,) be a sequence of normalized functions in M (V), with
degrees bounded by k € N. Then, [, a, converges normally in V' if and only
if the sequence (8,) of the divisors of the a, tends to co and Y oo ; [ITk(dy)|]

converges.

Proof:  Assume that the product of the , converges normally in V'. Then,
the sequence of the 4, tends to oo and so, by getting rid if necessary of a finite
number of its terms, we can consider a coordinate disk D in V containing the
zeros and poles of all the a,,. We can also suppose, by Proposition 2.5, that «,
is A-simple for every n € N. Hence, multiplying by 2¢ the series S dlogay,
and then integrating along the boundary of D, one arrives easily, using 2.16.2,
at the conclusion that ) .~ ; |0¢(d,)| converges for £=1,...,k.

Conversely, suppose that these series converge and that (6,,) tends to co. The
idea of what follows is to see that these hypotheses imply also that there exists

no € N such that «,, is A-simple for every n > ng, from which by 2.16.2 and by
Theorem 2.16 one deduces easily the normal convergence in V' of [[7; a,

By integrating both members of 2.16.1 (with o = «,,) along B;, forl =1,...,g,
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and expressing the resulting equality by means of matrices, one has:

fBldlogan
10 - 0 Jpw - [pw :
f3195n°° 01 -0 fngl fBzwg fBngOga"
i il IE R S =~ Ja, dlogan
fagaénw 00 -1 fngl fngg :
~ngdlogan

Recall now that, as is well known, the columns of the g x 2¢ matrix appearing in
this equality are linearly independent over R, and so generate a lattice L in €9
(such that C9/L is the jacobian variety of V), and note on the other hand that
the point of C9 defined by the first member comes close to 0 for large values of
n. Since this can only happen if for all but possibly a finite number of values of

n this point is 0, we obtain easily what we wanted to prove. [ |

Remark 2.18: Up to now we have always considered a point co € V which is
not of Weierstrass, but we want, also to explain briefly how the preceding theory
can be transcribed to the general case in which oo may be a Weierstrass point.

Let r; < -+ < ry be the Weierstrass gaps at oo, p = py < --- < py be the
nongaps belonging to {1,...,2g}, and 6; be the unique holomorphic differential
in V' with null integrals over A;,..., A, and with singular part at oo equal to
dz/z"i%1 for j € {1,...,g}. For every p € A’ — po, let f, be the normalized
function defined by

g
(2.18.1) dlog fp = Bpeo + Y_ 9;(p)0;,
j=t

where (¢1(p),...,pq(p)) € €7 is such that the second member of 2.18.1 has null
integrals along By,..., B, as well. Note the analogy with 2.5.2, and consider the
subgroup G, of G(V'), generated over M*(V) by all these functions f,, and
the field K, formed by the quotients of finite sums of functions in G, with
non-identically-zero denominator. As it is not difficult to see, these definitions
coincide with the previous ones if 0o is not a Weierstrass point (see Cutillas [2]).

Let § = 5.7, p, be a positive infinite divisor in V' and, for every n € N, let
[ be as the f, of above with p replaced by p,. Consider the two conditions on
§:
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(1) T, fn converges normally in V'.

(2) >°7°; 2(pn)? is absolutely convergent.

Then, reasoning as in (3)=>(1) of the proof of Theorem 2.12, one deduces easily
that (1)=(2). Conversely, observe that similar arguments to those in the proof
of Lemma 2.6, lead to the conclusion that ¢; 4+ 2™ plus a linear combination,
with coefficients in C, of 2P!,..., 2", has at oo a zero of order > 2g for every
je{l,...,g}, and note also that this implies the analogue of Lemma 2.7 with
p instead of g + 1, whereupon we can obtain as in the proof of the said theorem
that (2)=(1) too. Theorem 2.12 is thus generalized, and from this generalization
one can deduce that Corollary 2.13, (an analogue of) Theorem 2.14, Theorem
2.16 and Theorem 2.17 are also valid without necessarily supposing that oo is

not a Weierstrass point.

3. WF-fields

It was already explained in the Introduction what a WF-field is, but we want
now to state formally and precisely the meaning of this concept.

Definition 3.1: A subfield K of M(V') will be called a WF-field (in V'), if it
contains M(V), and if for every positive infinite divisor § in V' there exists a
Weierstrass product with factors in K associated with 6.

It is a clear consequence of this definition, and of the generalization for compact
Riemann surfaces of the Weierstrass factorization theorem (mentioned in the
Introduction), that M (V') is a WF-field in V', and we also know (Theorem 1.2)
that K is another example of a WF-field in V'.

An elementary but useful observation about this type of field is the following:

PROPOSITION 3.2: A subfield K of M (V') is a WF-field if and only if for every
sequence (8, of finite divisors in V' which tends to oo, there exists a sequence of
functions (f,) in K, such that for every n € N the divisor of f, is é,, and such

that [[,- ; fn converges normally in V'.

From now on, for every subfield K of M(V’), H(K) will be the subgroup of

O(V') formed by the functions 7 such that e” € K. We shall soon see that these
associated groups are fundamental in the theory of WF-fields.

LEMMA 3.3: Let K be a WF-field, and (a,) be a sequence of nonzero functions
of A(V'), which converges uniformly in every compact subset of V' to e, with
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7 € O(V'). Then there is a sequence (hy,) in H(K) such that [],, aneh»

converges normally in V'.

Proof: Since (a,) converges uniformly in compact subsets of V' to an exponen-
tial function, its sequence of divisors (d,) tends to oo and we can assume, by
getting rid if necessary of a finite number of them, that all the ¢, are A-simple.
By Proposition 3.2, there exists a sequence of functions f,, in K, such that the
divisor of f, is the restriction of 4, to V' for every n € N, and such that HZO=1 fa
converges normally in V', while by Proposition 2.5 it can be also supposed, with-
out loss of generality, that f, is A-simple, for every n € N. Therefore, being o,
and f, A-simple functions having the same divisor (in V') for every n € N, their
quotient must be an exponential belonging to K. |

In the following two definitions we explain some more useful terminology. The
concept of W-field appearing in the second was already mentioned in the Intro-
duction, and was introduced and investigated in Cutillas [2].

Definition 3.4: A generalized Weierstrass product in V' will be an infinite
product, normally convergent in V', of the type [] 2, f., where f, € O(V')
has either no zero in V' or a simple zero at a unique point of V', for every n € N.

A generalized Weierstrass product with factors in a subfield K of M (V') will
be a product as above, with all the f, belonging to K.

Definition 3.5: Let K be a subfield of M()’). We shall say that it verifies the
Weierstrass property (in V') or, in short, that it is a W-field, if it contains M (V)

and if for every finite divisor ¢ in V' there is a function in K whose divisor is 4.

Note that the class of W-fields contains that of WF-fields. Since all W-fields
generated by functions with finite divisor were determined in Cutillas [2], we are
interested in founding possible additional properties verified only by WF-fields:

for instance, those appearing in the following:

THEOREM 3.6: For a subfield K of M(V'), containing M(V), the following
conditions are equivalent:
(1) K is a WF-field.
(2) K is a W-field and H(K) is a dense subgroup of O(V').
(3) Every function with infinite divisor in O()') is a Weierstrass product with
factors in K.
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(4) Every function in O(V') is a generalized Weierstrass product with factors
in K.

Proof: (1)=>(2). Let 7 be any function in O(}’), and let (o) be a sequence
of nonzero functions in A(V’) converging uniformly in every compact subset of
V' to e” (Theorem 1.1). By Lemma 3.3, there exists a sequence (h,) in H(K)
such that [J°2, @ne” converges normally in V', whence we deduce that (a,e”")
converges uniformly to 1 in every compact subset of V', from which it results
easily that 7 is the uniform limit in compact subsets of V' of (~h,, + 2mik,) for
some sequence of integers (k).

(2)=(1). Let 6 = Y .~ | pn be a positive infinite divisor in V', and (Vi) be a
sequence of coordinate disks in V' with the radii of the z(V}) tending to 0, and
such that all the p, are in V; and none of them is in {J;—, 8Vi. By reordering
the sequence (p,) and replacing, if necessary, (V) by some subsequence, we can
suppose that py,...,pn, € Vi — V3, and that for k € N, pp,41.....Pny,, €
Vig1 — Vo, for some increasing sequence (ng) in N. Given any n € N, let
k € Z* be such that n, +1 < n < ngy1, where we are taking ny, = 0 if £ = 0 and
ni as above if k € N, and let f,, € K be a A-simple function having p,, as divisor
in V'. Then, in some neighbourhood of V — Vj.11, there is a uniform branch log f,
of the logarithm of f, and so, by Theorem 1.1, there exists h, € H(K) such that

2—k

lo h _ < —
” g fn + n“V D4 el — Nk

whence one easily obtains that []°., fneh converges normally in V.

(1)=(3). Let f be a holomorphic function in V' with infinite divisor § =
> Pn,and let [T07 | fn be a Weierstrass product associated with & with factors
in K. Then by multiplying, if necessary, f; by a suitable holomorphic function
of K without zeros in V', we can suppose further that f - ([]ow, fn)—1 =¢", for
some 7 € O(V'). Now, take into account that H(K) is dense in O()’) in order to
choose a sequence (), in H(K), such that )~ | 7,, converges normally in V' to
7, and note that this implies that [[ | f,e™ is also a Weierstrass product with
factors in K associated with 4, and that one has f = [],2, fae™.

(3)=(1) Easy.

(1)=(4). Use that H(K) is dense in O()V') as in the proof of (1)=(3).

(4)=>(1). Given a divisor é in V', consider a function f € O(V’) with divisor
4, and a generalized Weierstrass product [] -, f», with factors in K, convergent
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to f. Then, since [[_; fn is normally convergent in V', the same must be true
for [Tye, fn,. for every subsequence (fy,) of (f.), from which results the desired

conclusion. |

A natural question about WF-fields which one may pose is: does there exist
any minimal WF-field in V'? Condition (2) of Theorem 3.6 suggests that the

answer is negative, and the following corollary shows that in fact it is so.
COROLLARY 3.7: There is no minimal WF-field in V'.

Proof: By Theorem 3.6, it suffices to see that there is no minimal dense subgroup
of O(V'). Note, first, that if G is a dense subgroup of O(V’) then, for every p € N,
pG is also a dense subgroup of O(V’), and therefore, a minimal dense subgroup
of O(V') would be a minimal dense Q-vector subspace of O(V') too. Taking this
into account, we can apply a standard argument which we include below for the
sake of completeness. If there would exist such a Q-vector subspace H of O(V'),
we could consider a sequence (hy,) of functions in H, linearly independent over Q
and such that ||h,||g, < 1for every n € N, where (@) is an exhaustive sequence
of compacts in V' (in the standard sense). Being H minimal, all its Q-hyperplanes
would be closed and so (see, for instance, Schaefer [8]), all Q-linear forms in H
would be continuous. In particular, a Q-linear form ¢ in H such that ¢(h,) =n
for every n € N would be continuous and so, for some compact subset @ of V'
and some constant C' > 0, we would have n < C||hy||g for every n € N, which is
impossible since @ is contained in all but a finite number of the Q.. [

Theorem 3.6, together with a result in Cutillas [2], permits us to determine all
WF-fields in V' generated by functions with finite divisor, by means of certain
group homomorphisms. That paper presented a natural way of associating every
W-field K in V' with a group homomorphism ¢g: C¢* — O(V')/H(K), which we
recall briefly now, in two steps:

(1) Let J(A) be the quotient group of the group of finite divisors with degree 0
supported in A, by the subgroup of divisors of A-simple meromorphic functions
in V. Then, the mapping from J(A) into C9 such that the image of the quotient
class, in J(A), of the divisor }_._, ni(a; — 00), with a; € A’ for i =1,...,r, is:

r r
/ Znieaioo"-'y/ niea,-oo 9
Bi =1 By i=1

9 i=

is well defined and is in fact a group isomorphism from J(A) onto C9.
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(2) For every a € A’ there exists a A-simple f, € A’, with divisor a in V'. Let
Aly. .., Ag € C be such that dlog fo = 400 +Z§’__,1 A;8; +dh,, where h, € O(V')
and the notation is as in Section 2. Then, the correspondence a — 00 — hg,
where h, is the quotient class of h, in O(V')/H(K), can be extended to an
homomorphism, from the group of finite divisors with degree 0 supported in
A onto O(V')/H(K), which is zero on the subgroup of divisors of A-simple
meromorphic functions in V, and so defines an homomorphism g from J(A)
into O(V')/H(K’), which by (1) can be thought of as defined on C9.

The above said result in Cutillas [2] is that the map K — 9k is a bijection ¥
of the set of all W-fields in V' generated by functions with finite divisor, with the
set of all homomorphisms ¢ from CY into any possible quotient group O(V')/H
of O(V') by a subgroup H containing C (this subgroup coinciding with H(K) if
¥ = Yk). Note finally that every W-field in V' contains the W-field generated
by its functions with finite divisor, and that the analogous assertion is true for
WEF-fields.

COROLLARY 3.8: The restriction of ¥ to the set of WF-fields in V' generated by
functions with finite divisor is a bijection with the set of all homomorphisms ¥
from C9 into any possible quotient group O(V')}/H of O(V') by a dense subgroup
H containing C (this subgroup coinciding with H(K), if ¢ = ¥(K) for some
WF-field K in V').

Remark 3.9: Throughout this section, V' has been the complementary in V of
a unique point co. If, instead of this, V' is of the form V — S, for some nonvoid
finite subset S of V, we can define the concept of WF-field in V’ in a similar
way. M (V') and the subfield, analogous to K., generated by the functions with
polynomic exponential singularities at the points of S, are likewise examples of
WF-fields in V'. The concepts of Weierstrass product and generalized Weierstrass
product can also be easily generalized to this case and, by using the same type of
arguments, analogues of Theorem 3.6 and Corollaries 3.7 and 3.8 can be proved.
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