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ABSTRACT 

Let )2' be the complementary in a compact Riemann surface )2 of a point 

(or a finite set). In this paper axe characterized the subfields, of the field 

of meromorphic functions in )21, containing suITicient functions to verify a 

factorization property, similar to that of the classical Weierstrass theorem. 

It is also seen that the field generated by the Baker functions is not of 

this type, and the problem is solved of determining the divisors, in V', of 

the holomorphic functions admiting Weierstrass factorizations with Baker 

f~inctlons as factors. As an application, a theorem is obtained character- 

izing the infinite products, of meromorphic functions in ]2 with bounded 

degree, which converge normally in V'. 

1. I n t r o d u c t i o n ,  n o t a t i o n s  and  p r e l i m i n a r y  r e s u l t s  

Let ]; be a compact Riemann surface of genus g, cc be a point of V, and 1;' = 

F - {co}. Let (p~) be a sequence in ]2' converging in ~2 to oc. Then it is well 

known that,  for every n E N, there exists a holomorphic function fn in ~2', with a 

simple zero at Pn ,  without zeros in ~2' - {p~}, and such that [In~__l ]n converges 

normally in ~2~. We shall call such a product, a Weierstrass product associated 

with the sequence ( P n ) ,  and the above statement will be expressed in short by 

saying that  the field M0; ' ) ,  of meromorphie functions in ];', verifies the WF 

(abbreviation of Weierstrass factorization) property, i.e. for every sequence (Pn) 

as above there is a Weierstrass product with factors in M(1;') associated with 
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(p~). Furthermore, if V is an open neighbourhood of oc in F with a coordinate 

z such that z(ec) = 0, and if the points p~ belong to V, it is also known (see, 

for instance, Baker [1]) that for every n E N, f~ can be taken to be in V - {oc} 

of the form he P(1/z), with h 

if K,~ is the field generated 

WF property in F ~ too. 

meromorphic in V and P a polynomial. Therefore, 

by all flmctions in F ~ of this form, K ~  verifies the 

Consider now the subfields of K ~  , or in general of M(F~), which also contain 

sufficient functions to verify the WF property, and note that if K is such a field 

then for every p E F ~, at least a function with divisor p must belong to h', 

and that (if oc is not a Weierstrass point) the simplest subfield of K ~  verifying 

this, is the field K ~  generated by the so-called Baker functions in F ~, i.e. the 

functions of the above said type corresponding to polynomials P of degree < g 

(see Cutillas [2]). These considerations together with the previous ones lead to 

the following natural questions, in whose statement the expression "WF-field" 

means a subfield of MOP) containing the field M 0  2) of meromorphic functions 

in 12, and verifying the WF property: 

(1) Is K ~  also a WF-field in 12t? 

(2) If the answer to (1) is negative, can we determine the Weierstrass products 

with factors in K ~  (i.e. with Baker functions as factors)? 

(3) Can we characterize all the WF-fields in 1)~? 

The purpose of the authors in this paper is to study WF-fields and, in partic- 

ular, to provide solutions to these problems. For instance, we shall see that the 

answer to question (1) is negative by showing a certain condition on the sequence 

(Pn), which is equivalent to the existence of an associated Weierstrass product 

with factors in K ~ ,  and we shall characterize the WF-fields in 12~ by means of 

a~ simple criterium, which also allows us to determine those among them which 

are generated by functions with finite divisor (observe that every WF-field in 12~ 

contains one of this type). Specifically, in Section 2 we prove that the existence 

of an associated Weierstrass product o~ , l--[n=1 fn with factors in K ~  , is equiva- 

lent to the absolute convergence of the series ~,~--1 z(Pn) ~+1, and we draw some 

interesting consequences from the hypothesis of the convergence of the analogous 

series with exponent 1. Part  of the obtained results are generalized later: on one 

hand by allowing larger orders for the poles at ec of the d log f,~, and, on the 

other, by considering pairs of sequences of positive finite divisors with bounded 

degree in 12~, from which we deduce as an application a result characterizing the 
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infinite products, of functions in M(F)  with bounded degree, which converge 

normally in Y I. Finally, in Section 3, some equivalent properties to that  of being 

a WF-field are shown: one of them justifying the terminology used, and the other 

leading to the determination of all WF-fields in Y I generated by functions with 

finite divisor (by means of the exponentials of holomorphic functions belonging 

to them and certain natural group homomorphisms), as well as to the proof that 

there.is no minimal WF-field, after which we finish with a note remarking that  

these results can be easily generalized to complementaries of arbitrary nonempty 

finite subsets of Y r. 

1;, oc, V', t ( ~  , K ~  , M(V), M(V'), V and z will be as above. V' will be 

V -  {oc}, and we shall suppose further that V is a coordinate disk with respect to 

z (i.e. V is contained in a coordinate open neighbourhood of oo, with coordinate 

z, and z(V) is a closed disk in C). A c o o r d i n a t e  disk in U, for any open 

subset U of V which contains oo, will mean a coordinate disk, D, with respect 

to z, centered at ec (in the obvious sense), and such that D is contained in U. 

G ~  , Go~ and G(F')  will be respectively the groups of functions in K ~ ,  K ~  

and M(V'),  having finite divisor. Unless otherwise stated, we shall suppose that 

ec is not a Weierstrass point and that the genus g of 12 is > 0. For every open 

subset U of V or any other Riemann surface, O(U) will be the ring of holomorphic 

functions in U, M(U) the ring of meromorphic functions in U, and M*(U) the 

multiplicative group of M(U). 

A1 . . . .  , Ag, B1 , . . .  Bg will be piecewise C 1 curves in 12' defining a canonical 

system of generators for the fundamental group of 12 (following, for instance, the 

terminology in Gunning [4]), and A will be the simply connected open subset of 

12 complementary of the union of these curves. We shall suppose without loss of 

generality that  the topological closure V of V is contained in A, and we shall put 

A ,  = _ 

For every nonvoid finite subset S of 12, A(12 - S) will be O(12 - S) N M(12), 

and when we consider A(12 - S) (or any other space of holomorphic functions in 

an open subset of a Riemann surface) as a topological space, the topology will 

be that of the uniform convergence in compact subsets. 

The following theorem, which will be useful later, is an easy consequence of 

theorem 10 in Royden [7]. 

THEOREM 1.1: Let U be a nonvoid open subset of V, different from 12, and S be a 

finite subset of V - U containing exactly one point of each connected component. 
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Then A(F - S) is dense in O(U). 

As we have said in the Introduction, there is a long-time generalization of the 

Weierstrass faetorization theorem, for holomorphic functions in F ~ (which seems 

to have been proved for the first time by Giinther [5]), in which the elementary 

factors of the complex plane version are replaced by functions having singularities 

of polynomic exponential type at oo (i.e. functions of Goo). Besides the paper 

of Giinther, and the said book of Baker, a more modern proof can be either seen 

later in Section 3, since it is a particular case of an implication in a theorem char- 

acterizing WF-fields which will appear there, or obtained directly from Theorem 

1.1 by reasoning as in that theorem. This result will be utilized in Section 2, and 

can be stated in the following way: 

THEOREM 1.2: I(oo is a WF-field in F'. 

2. Weierstrass products with factors in K~  

First, we explain some more terminology to be used from now on. 

Definition 2.1: Given a sequence (Pn) in F' converging in F to oc, consider the 

positive infinite divisor in F ~, ~ = ~n~----lPn" A Weierstrass product associated 

with ~ will be an infinite product normally convergent in F' of the type I-In~__l fn, 

where fn is, for every n E N, a function in O(F') having p~ as divisor. 

A Weierstrass product with factors in a subfield K of M(F ' )  will be a product 

Nn~176 fn a s  above such that all the functions fn belong to K. 

Note that,  with the notation of this definition, a Weierstrass product associated 

with 6 is the same as a Weierstrass product associated with the sequence (p~) in 

the sense of Section 1. 

We also recall, since it seems to be not totally standard, the following definition: 

Given an infinite product 1-In~176 F~, of meromorphic functions F~ in some 

Riemann surface W, it is said to be normally convergent in W, if for every 

compact subset K of W there exists no E N such that: 

(1) If n _> no, then F~ has no pole in K and ][F~ - 1[I K < 1, with the habitual 

notation denoting the supreme norm. 

(2) ~ - - n o  [[ 1og(F~)HK < +Co, where log(F~) represents the principal branch 

of the logarithm of Fn (i.e. the branch whose imaginary part takes values in 
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In order to study Weierstrass products, it will be convenient, as we shall see 

later, to consider convergent series of differentials. 

Given a series ~ j = l  J, where the 0j are meromorphic differentials in 142, with 

IV as above, we shall say that it converges normally in IV (resp. uniformly in 

compact subsets of IV) if for every compact subset K of any coordinate open 

subset W of IV, with coordinate w, there exists J0 E N such that 0j has no 

pole in I(  for every j >_ J0, and such that Ej=jo II~j/dWllg converges (resp. 

~J~=Jo Oj/dw converges uniformly in K), where of course 0j/dw represents the 

meromorphic function hj such that 0j = hjdw in W. 

We shall also use the analogous terminology for infinite series of functions. 

The following conventions will be useful for the sake of simplicity. It will be 

always evident that they mean no loss of generality. 

WARNING 2.2: 

(1) In the sequel, whenever we consider a series having possibly a finite number 

of undefined terms (for instance ~ - - 1  z(pn), with (pn) as in Definition 2.1) 

and we say that this series converges in some sense, it must be understood 

that by getting rid of that finite set of terms, the resulting series converges 

in the indicated way. The same will be valid for infinite products. 

(2) Every infinite divisor in V ~ (resp. every sequence of finite divisors in V 

tending to ~ ,  in the obvious sense) will be supposed, if necessary, to be 

supported (resp. to have all its terms supported) in V. 

Let us consider again a sequence (Pn) as in Definition 2.1, and the divisor 

in V t, 6 = ~-~n~__l Pn. We want to study in this section the problem of finding 

out, among all possible sequences (p~), those for which there exists a Weierstrass 

product, with factors in K ~ ,  associated with the corresponding 6. We begin with 

an observation, which is trivial, but will be fundamental. 

Remark 2.3: Let ~ = ~n~=l Pn be as above, and r be a function in O(V) having 

a zero of order > s E N, at c~. If ~ = 1  Iz(P~)l ~ converges, then the same is true 

for ~ n ~ l  Ir 

As a consequence, the condition on the series ~ - - 1  z(p~), of being absolutely 

convergent, is independent of V and z (if V and z are as in the Introduction). 

The next proposition is useful for simplifying proofs of existence of Weierstrass 

products. In its statement and often in the sequel, we shall utilize, for a cer- 

tain type of function, the denomination introduced, for brevity reasons, in the 
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following: 

Definition 2.4: Given a function f E M(1)'), we shall say that it is A-simple, 

if its divisor is supported in A (i.e., all its zeros and poles are in A), and if the 

integrals of dlog f along A1, . . . ,  Ag, B1 , . . . ,  Bg are null. 

PROPOSITION 2.5:  If  rIn~=l fn converges normally in 12', with fn E G(])') for 

every n E N, then there exists no E N such that for every n 2 no, f~ is a 

A-simple function. 

Proof: Let f C M(])') be the uniform limit on compact subsets of ]2' of the 
n sequence ( r I j=l  fJ). We can suppose without loss of generality that the divisor 

of f is supported in A', and that the same is true for all functions f~. Then, since 

fA t d log f and fAj d log f ,  are, for every n E N, integral multiples of 27ri, and 

since fmj d l o g f  coincide with the sum of the series ~n~__l fmj dlogfn, for j = 

1 . . . . .  g, one deduces easily that all except possibly a finite number of summands 

in this series are zero. Being, finally, the same reasoning evidently valid for the 

curves B j, the proof is finished. | 

Before stating a first auxiliary result, it is convenient to explain some more 

notation: 

{~01,...,wg} will be a basis of the space of holomorphic differentials in 12 

verifying fA, W j  : (~ij (Kronecker's delta). 

For j = 1 , . . . ,  g, Oj will be the unique holomorphic differential in 12' such that 

Oj - d z / z  j+l is holomorphic in V, and such that fA, Oj = 0, for every ~ = 1 , . . .  ,g. 

For every pair a, b of points in A, Oab will be the normal differential of the third 

kind associated with a, b, and with the system of curves A1 , . . . ,  Ag, B 1 , . . . ,  Bg; 

i.e. O~b is holomorphic in 12 - {a, b}, has simple poles at a, b with residues 1, -1 ,  

respectively, and fA, O~b = 0, for t = 1 . . . .  , g. 

Consider now the functions Ce of p E A', defined for g = 1 , . . . ,  g, by 

(see, for instance, Farkas Kra [3]), where the integral with limits oo and p is taken 

along a curve in A. The last equality implies that each one of these functions can 

be also considered as a holomorphic function in A taking the value 0 at co. Let 

~j: A' C be, for j 1 , . . . ,  g, such that Op~ g -+ = + ~-~-j=l ~J (p)Oj has null integrals 
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along B1 . . . .  , Bg, for every p C A ~. Then, integrating along Be, one has: 

g 

(2.5.1) 27riOe(p) + Z ~J(P) ~ Oj = O, 
j = l  

for f = 1 , . . . , 9 .  Hence, since the matrix with coefficients fBt Oj is invertible 

because of our assumption on the point ec, we deduce that ~ , . . . ,  ~g are likewise 

holomorphic functions in A with a zero at oc (they form, as well as the functions 

r  r a set of g linearly independent integrals of the first kind in A, in the 

classical sense). 

Note also, for later use, that i fp is a point of A ~ and if fp is a A-simple function 

in G ~  with divisor p, then with the notation of above, 

g 

(2.5.2) d log fp = 0p~ + E ~J (p)Oj. 
j = l  

LEMMA 2.6: 

at oc. 

For every j E {1 , . . . ,  g}, the sum ~j + zJ has a zero of order >_ 9 + 1 

Proof: Since 
fB 27riA Oj = ~ e,j-1, 

3 

where ~e,j-1 is, for e = 1 , . . .  ,g and j E N, the coefficient of z j-1 in the Taylor 

series of r in V (see, for instance, Farkas-Kra [3]), the equality 2.5.1 can be 

rewritten as: 

(2.6.1) 

{ 10 
t;) 

1 2 9 

Note now that,  for g = 1 . . . .  ,g, the coefficients of the e-th row of the square 

matrix whose inverse appears in this equality are precisely the coefficients of 

z, z 2 , . . . ,  z 9 in the Taylor series of ~ at ec, whence we easily deduce that  both 

members of 2.6.1 are of the form: 

( z +  zg+lhl , 
- 

for some hi . . . . .  h 9 C O(V). | 
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LEMMA 2.7: Let 5 = ~',~~ be a positive infinite divisor in V ~ such that 

~n~176 z(p,~) g+l converges absolutely, and let fn be a A-simple function in Goo 

with pn as divisor for every n E N. If  D is a coordinate disk in V and if h is 

a holomorphic function in a neighbourhood of D having a zero at oc, then the 

series ~~176 rOD hd log fn converges absolutely too. 

Proo~ By 2.5.2, 
g 

dlog f~ = Op~oo + E ~j(p~)Oj, 
j = l  

and so, assuming if necessary that all the pn are in D, 

~ f o  ~ (  ~ - ~ l d J h  ) h d l o g f n  = h(p ) + , 
n = l  D n=l j = l  " 

and by Remark 2.3 and Lemma 2.6, the hypothesis on (~ implies that this last 

series converges absolutely if and only if the series 

does. 

Observe now that  
~ dJ h . z j 

j=l  

is precisely the initial polynomial of degree g in the Taylor series of h at oe, from 

which, again by our assumption on the convergence of y~n~__l z(pn) ~+1 and by 

Remark 2.3, one obtains the desired conclusion. | 

Remark 2.8: It is convenient to choose a point P0 E V - V, fixed from now on, 

in order to have the possibility of normalizing functions and differentials in V ~ by 

imposing on them, respectively, the conditions of taking the value 1 and having 

a zero at p0. We shall also suppose, since it will be useful later, that Po is not a 

Weierstrass point. 

LEMMA 2.9: Given f l  C O(W - {c~}), for some open neighbourhood W of c~, 

there exists f E O(V' - {Po}), having a pole of order <_ g at Po (or no pole), and 

such that f - f l has no singularity at oo. 



Vol. 101, 1997 WEIERSTRASS FACTORIZATIONS 213 

Proo~ Let O be the sheaf of holomorphic functions in ];, O' be the sheaf on 

l? whose sections in every open subset U of 12 are the holomorphic functions in 

U - {Po, oc}, and consider the exact sequence of sheaves: 

0 ~ 0 ---+ O' ~ .T" ~ O, 

where the second arrow represents the homomorphism defined by restriction of 

functions, and .~ is the quotient sheaf (91/O. Then, since Hi(l ,  ', O') = 0, one 

obtains from the corresponding cohomology exact sequence that: 

0 --~ C --+ V(l;, 0 ' )  --~ F(V, F)  ---+ H~(V,O) ~ O, 

where we have used the standard notations. Let now u be a coordinate in some 

open neighbourhood of P0 such that  u(po) -- 0, and note that  the quotient classes 

in F(Y, 5c)/Ira(F(12, O')) of the g sections of $" in 12 whose values at po are defined 

by the germs of l / u ,  l / u 2 , . . . ,  1/ug, and whose values at co are all 0, are linearly 

independent over C because of the election of P0 as a non-Weierstrass point. 

Hence, these classes span the said quotient space (take into account that the 

dimension over C of H I (Y, O) is 9), from which results easily the conclusion of 

the statement. I 

Let U and D be coordinate disks in V, with U C D, and let/.4 be the comple- 

mentary in V of U. Let f be a holomorphic function in L/, and 0 be a holomorphic 

differential in D - {c~}. As usual, we shall represent with the notation (f, 0) the 

pairing of f and 0 given by foP1 fO, where D1 is another coordinate disk in D 

such that  U c D1 (and, of course, the integral is independent of the D1 con- 

sidered verifying these conditions). We shall also use the analogous notation 

(w, h) in order to denote the similarly defined pairing of w E ~t(b/) (the space of 

holomorphic differentials in L/) and a holomorphic function h in D - {co}. 

Let 0o(/4) be the subspace of 0(/4) formed by the functions with a zero at p0, 

and ~o(/~) be the subspace of Ft(L/) defined by the differentials with a zero of 

order >_ g at Po- The following lemma related with these spaces is a consequence 

of corollary 2 of theorem 9 in Royden [7]. In its statement, and in the sequel when 

necessary, we consider ~t0(5/) (and also 00(/4)) as a topological vector space, with 

the topology of uniform convergence in compact subsets of b/. Since it is linearly 

and topologically isomorphic to O(L/), with its analogous natural topology, it is 

a nuclear locally convex space. 
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LEMMA 2.10: I f U  and Lt are as above, for every continuous linear functional ~/, 

on f2o(Lt), there exists a holomorphic function h in some open neighbourhood of 

U, vanishing at co, and such that r = (a;, h) for every ~ E f~o(bl). 

Proof." Let ~0 be a holomorphic differential in 12~, without zeros in 12~- {Po }, and 

with a zero of order 9 - 1 at P0, and consider the linear topological isomorphism 

T, from O0(L/) onto f~0(/'/), given by the multiplication by a~0. By the mentioned 

theorem of Royden, there exists a coordinate disk D in V, with U C D, and a 

holomorphic differential 0 in D such that if w E f~0(/A), then 

= ( r  o = O) = 01 o). 

Apply now Lemma 2.9 to f l  = 0/w0 in order to obtain f E O(12' - {P0}), with 

possibly a pole of order _< g at P0, and such that h = f + 0/a;0 vanishes at co, 

and note that by the residue theorem it is also true that ~(a;) = (co, h) for every 

,.,.., ~ ~o(U).  I 

To obtain, from convergent series ~ - 1  d log f~, with f,~ E M(V'), convergent 

products fin~176 1 fn, that is, to choose the multiplicative constant corresponding 

to each f~ in such a way that 1-I,,~__l fn converges, it is useful to introduce the 

following: 

Definition 2.11: We shall say that a function f E M02'), having no zero or pole 

at the point Po, is normalized, if f(Po) = 1. 

If f has a zero or a pole at Po, we require no condition on f to be normalized, 

i.e. every such f is normalized. 

Observe that if l~n~176 fn converges normally in 12', with fn ~ M02') for every 

r E N, then the last possibility in this definition can only hold for a finite number 

of factors. 

If f is a normalized A-simple function in Goo, which has all its zeros and all 

its poles in A - {P0}, then f is uniquely determined by its divisor. Note also 

that  if ~,~--1 d logfn  converges normally in 1;', with fn E M(12') normalized for 

every n E N, then 1rI,~__l f,, converges normally in 12' too. 

THEOREM 2.12: Let ~ = ~ = l  P~ be a positive infinite divisor in 12', and, for 

every n E N, let fn be a normalized A-simple function in G ~  with p~ as divisor. 

Then, the following conditions on ~ are equivalent: 

(1) E n ~ X  Z(Pn) 94-1 is absolutely convergent. 
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(2) The product rIn~=~ f~ converges normally in V'. 

(3) There exists a Weierstrass product associated with 5 with factors in Ko~. 

Proof'. (1)o(2) .  It is sufficient to see that Z~=I  dlogf~ converges normally 

in every open subset /d of V t defined as in Lemma 2,10. Let (n be, for every 

n ~ N, a holomorphic differential in V such that d log f~ + (~ has at P0 a zero of 

order >_ g. Then, there exists no E N such that d logf~ + (~ E f~0(/d), for every 

n > no. By Lemmas 2.7 and 2.10, ~ - - ~ 0  ~b(dlogfn + (n) converges absolutely 

for every continuous linear functional ~b in f~o(/d), and so, since this locally convex 

space is nuclear, we deduce (see for instance proposition 4.2.2 in Pietsch [6]) that 

~~176 ~ d log f~ + (~ converges normally in/d, from which it results, as is easily 
oo d seen, that the same holds for Y~=I ,logf~ (consider the vector in C g whose 

components are the integrals of dlogfn + (n along A 1 , . . . , A  9, and take into 

account that r is a linear combination with coefficients in C of ~1 . . . . .  ,;g, for 

every n C N, where ~1 , . . . ,  a;g are as explained just after Proposition 2.5). 

(2)0(3) .  Evklent. 

(3)~(1) .  Suppose that 1"]~_1 F~ is a Weierstrass product associated with 5 

with factors in I(oo. By Proposition 2.5, and getting rid if necessary of some 

of them, we can suppose that all the functions Fn are A-simple. Therefore, by 

2.5.2, one has in A: 
g 

dlogF  = + Z  j(p.)0j, 
j = l  

whence, by multiplying by z 9+1 and integrating along OD, where D is a 

coordinate disk in V, we obtain that the series 

zg+ldlogF~ = 2zri z(p~) 9+1 
n = l  D n = l  

is absolutely convergent. | 

Let (p~) be as above. Then, since the convergence of ~n~__l ]z(p~)lg+l is, as 

we have seen, an equivalent condition to the existence of a Weierstrass product 

with factors in Ko~ associated with (p=), it seems natural to investigate the 

convergence of similar series with lower values of the exponent. Let f~ be as in 

Theorem 2.12, and P~(1/z) be, for every n E N, the unique polynomial in 1/z, 

without independent term, such that f~ = fne P~(1/~), for some f,~ E M(V) (we 

can call Pn(1/z) t h e  s ingu la r i t y  e x p o n e n t  p o l y n o m i a l  of f , ) .  Then, 

e l o g  = d l o g  - 
z ~ 
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and comparing with 2.5.2 (with p = p,~), we deduce that: 

_ + . . .  + _ _  . 
P , ( 1 / z )  = ~ ~) + 2z 2 gz~ 

Note as a consequence that, by Lemma 2.6, the series of the singularity exponent 

polynomials of the f~ may not converge absolutely coefficientwise despite the 

normal convergence in pt of 1-[,~=1 f,~. In fact, this lemma shows that for each 

j fixed in {1, . . . ,g},  the series of the coefficients of 1/zJ in these polynomials 

converges absolutely if and only if ~,~--1 [z(Pn)] j does. The following corollary 

presents several conditions equivalent to the convergence of this last series for 

the value 1 of j.  

COROLLARY 2.13: Let 5 and f~ be as in the theorem. Then, the following 

conditions on ~ are equivalent: 

(1) End__1 Z(pn) is absolutely convergent. 

(2) E~=,  Ov.~ converges normally in )2'. 

(3) The series Y~,~--1 fBj Or. o0 is absolutely convergent, for j = 1 , . . . ,  g. 

(4) The series ~ - - a  ~i (P,) is absolutely convergent, for j = 1 , . . . ,  g. 

(5) Each series of coefficients of  the singularity exponent polynomials of the f~ 

is absolutely convergent. 

Furthermore, any of these conditions implies that [I~=1 f~ converges normally 

in )21 . 

Proof." (1)~(2). Theorem 2.12 implies that V[~_I f~ converges normally in )2 ~, 

and,  b y  L e m m a  2 .6  a n d  R e m a r k  I  (pn)f < for j = 1 , . . . , 9 .  

Therefore, by 2.5.2, ~~ Op,~ converges normally in 12 ~. 

(2)=~(3). Evident. 

(3)=~(4). By 2.5.1. 

(4)=V(5) and (5):=~(1). See the observations previous to this corollary. | 

Note that although we had made the assumption that g > 0, Theorem 2.12 

is true for g = 0, and reduces in this case to the trivial equivalence, for a di- 

vergent sequence (a~) in C, between the condition ~ 1/[anl < +ec, with the 

sum extended to the nonzero terms of (a~), and the condition that the product 

I]  ~ A~(z - a~) converges normally in C, for some sequence (A~) in C*. The n=l  

following generalization of Theorem 2.12 deals with Weierstrass products having 

factors with singularity exponent polynomials of larger degree than g, and also 

generalizes a well known result in the case g = 0. 
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THEOREM 2.14: Let ~ be as in Theorem 2.12, and e E N be > g. Then: 
~--~ o<~ [~. \~+1 (1) The series Z-~n=l ZkPn} converges absolutely if and only if there exists 

a Weierstrass product 1-I~=1 f,~ associated with 5, with f ,  E -Koo having 

singularity exponent polynomial of degree <_ ~ for every n E N. 

(2) I f  any of the conditions in (1) holds, the singularity exponent polynomial 

of f ,  can be chosen to be of the form 

Z(pn) g+l Z(pn) 
Q (1/z) + (g + 1)zg+l + . . - +  s Y- 

where Q~ is a polynomial of degree <_ g, for every n E N. 

Proof'. (1) If there is a Weierstrass product as in the statement, then by reason- 

ing as in the proof of (3 )o(1)  in Theorem 2.12, one deduces that  ~n~__l [z(p~)[e+l 

< -]-~. 

Conversely, assume the convergence of this series and observe that  as the case, 

f = g, is part of Theorem 2.12, we can also suppose that s >_ g +  1. Consider a A- 

simple function F~ E G ~  having Pn as divisor, and let Hn C A(V ~) (notation as in 

Theorem 1.1) be, for every n E N, such that  II~__l Fne H~ converges normally in 

V ~ (which exists by Theorem 1.2). Use now, for instance, the Riemann-Roch the- 

orem to obtain h,~ E A(V') such that the coefficients of 1/z g+l, 1/z9+2,... ,  1/z ~ 

in its Laurent series in V' vanish, and such that o rd~(Hn - h~) > - f ,  and note 

that  the proof will be finished if we see that ~ - - 1  hn converges normally in V'. 

By the theorem of Royden used in the proof of Lemma 2.10, it will suffice to 

demonstrate that if a is any holomorphic function in some coordinate disk W 

in V, with a zero of order _> g at c~, and if D is a coordinate disk in W, then 

~n~=l fad h,~adz converges absolutely. This is clear if a is of the particular form 

z j, with g < j <_ s - 1, because of the assumption on the coefficient of 1/z j+l in 

the Laurent series of h~ (which coincides save for the factor ~1 with J'oo hnzJdz) , 

and so we can reason assuming, further, that a has a zero of order _> e at ~ .  

Let W and D be as above for the considered a, and let ~ E O(W),  with a zero 

of order _> ~ + 1 at c~, be such that d~/dz = a. Then, 

D hn~ "-~ -~OO ̀~dhn ~'27~i~(Pn)-- ~D ~(dHn +dl~ 

where the first equality is an integration by parts and the other is a consequence of 

the coincidence of the coefficients of dz/zJ in the Laurent series in V I of dh~ and of 
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d log Fn +dH~, for every j > (+  1. Finally, take into account that the convergence 
o o  f , ~  ' of [g ,=l  F, eH" implies the absolute convergence o ~ = 1  JOD 3(dHn + d l o g F , ) ,  

and that ~,~=~ 13(P~)l converges by Remark 2.3, in order to obtain the desired 

conclusion. 

Proof of (2): From ~ = l  tz(P~)[ e+* < +ec,  one deduces, as in the usual proof 

of the classical Weierstrass factorization theorem, that if 

e ~ - r  ~ T...n- l,-77u-, 

then I]~=1 n converges normally in V'. Hence, d log]~  - d l o g f ~  being 

holomorphic in V', it follows that if D is a coordinate disk in V, then 

~n~=l faD ZJ(dlog-]n -d log f~ )  converges absolutely for every j e N, whence 

we obtain that the series of the coefficients of z j in the singularity exponent 

polynomials of the 7 . ,  and the analogous series for the f~, differ in an absolutely 

convergent one, say ~,~=1 ItJ n, for every j C N. Finally, to finish the proof, note 

that if hj E AO/I) has singular part equal to 1/z j at co, for g + 1 < j < g, then 

~n~176 ttjnhj converges normally in V'. | 

Besides the generalization provided by Theorem 2.14, we want also to gener- 

alize partially Theorem 2.12 and Corollary 2.13, by considering more than one 

sequence, of the type of the (Pn) of above, in order to obtain, as an application, 

a result characterizing the infinite products, of functions in M(V) with bounded 

degree, which converge normally in V'. First note that, up to now, we have al- 

ways considered a sequence of points in "17'; that  is, we have supposed that  each 

one of these points is different from oo. Of course, the differential Op, oo and the 

normalized function fp, (= f~) appearing in the statements of Theorem 2.12 and 

Corollary 2.13 seem to have no meaning when pn = oo, but we can adopt the 

arrangement that 0oooo = 0 and that foo = 1 (justified by the fact that for every 

sequence (a~) in Y' converging to ec, the corresponding sequences (0a,oo) and 

( fa , )  converge uniformly in compact subsets of Y', respectively to 0 and 1, as is 

not very hard to check). With this arrangement, if we extend in the obvious way 

the definition of Weierstrass products, the correctness of the following becomes 

evident: 

Remark 2.15: For a sequence (Pn) of points in V converging to oo, the analogous 

conclusions to those of Theorem 2.12 and Corollary 2.13 also hold. 
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The above-referred useful generalization for proving a result about infinite 

products of functions in M(I;),  consists in replacing the sequence of points (Pn) 

by a sequence of finite divisors. Given k E N, let Dk be the set of divisors in 

)2 of the form al + ' . -  + at, with a l , . . . , a r  C V and r < k, and let al  . . . .  ,a~ 

be the functions defined, for every d = al + . ' .  + ar C Dk and for g = 1 . . . . .  k, 

by a d d  ) = z(al) e + . . .  + z(aT.) e. Then, the subset of Dk formed by the divisors 

of degree k can be considered as the k-th symmetric product V (k), and can be 

naturally endowed with a k-dimensional complex manifold structure, being well 

known that in this manifold the functions ~rl . . . .  , ak are coordinates, i.e. the 

restriction to V (k) of the mapping Fk: Dk ---+ C k, with components a l , . . . ,  crk, is 

a holomorphic isomorphism of V (k) with an open subset of C k (see, for instance, 

Gunning [4]). 

If we denote by :/?k the set of divisors of the type ~ = d - d', with d, d' E 

Dk, we shall also set cre(5) = ~e(d) -ae(d') ,  for ~ = 1 . . . . .  k, and Fk(5) = 

((r1(5),. . . ,  c~k(5)) C C k. The following notation will be used too: for every such 

(~ = d - d', if d = al + "  �9 + ar and d' = bl + ' "  + bs, then 0 ~  will denote briefly 

Oaloo +'" ' + O a ~ -  (Obloo + ' "  "+0b,~),  and for every r E O(V (k)) and ~ C O(V), 
we shall also represent by 05 and ~ their naturally defined extensions to :Dk, i.e. 

r = 05 (d + (k - r)ec) - 05 (d' + (k - s)c~) and ~((~) = ~(al)  + . . .  + ~(a~) - 

(~(bl) + . . .  + ~(bs)), with 5 as above. 

Let (5~) be a sequence in :Dk tending to c~ (in the sense of (2) in Warning 2.2), 

and note that since the convergence of ~n~=l ][Fk(hn)H (where 11 II denotes, for 

instance, the usual norm in C a ) implies the convergence of ~ - 1  [05(5~)1 for every 

holomorphic function r in V (k) having a zero at kc~ (and hence the convergence 

of ~--11~(5~)1 for every ~ e O(Y) vanishing at oc), then by applying the same 

device as in the proofs of Theorem 2.12 and Corollary 2.13, one can demonstrate 

without difficulty the following: 

THEOREM 2.16: Let (hn) be a sequence in 7?k tending to oo. If f ~  is the 

normalized A-simple function in Go having as divisor the restriction of hn to V', 

then the following conditions are equivalent: 

(1) En~ ]lrk(~n)ll is convergent. 

(2) ~ - - 1  0 ~  converges normally in ];'. 

(3) The series ~,~=1 fB~ 0 ~  is absolutely convergent, for j = 1 , . . . ,  g. 

(4) The series ~ = 1  ~oj(~) is absolutely convergent, for j = 1 . . . .  , g. 

(5) Each series of coefficients of the singularity exponent polynomials On a 
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sense similar to that of Corollary 2.11) of the f ~  is absolutely convergent. 

Furthermore, any of these conditions implies that 1-h~=t f ~  converges normally 

in V'. 

In the particular case in which the 4~ are principal divisors in V, one can study, 

with the help of Theorem 2.16, the convergence of certain products of functions 

in M(F).  Note, for later use, that if (~ is the divisor of a function a E M(F),  and 

is supported in A, then 

(2.16.1) ) d log a = 06~ + ~.= J d log a wj. 

In particular, if we assume further that a is A-simple, then 

(2.16.2) dlog a = 0,~.  

THEOREM 2.17: Let (an) be a sequence of normalized functions in M(V), with 

degrees bounded by k C N. Then, l-In'=1 an converges normally in V' if and only 

if the sequence (Sn) of the divisors of the o~ n tends to (X) and En%l HFk((~n)][ 

converges. 

Proof: Assume that the product of the an converges normally in V I. Then, 

the sequence of the 6n tends to ec and so, by getting rid if necessary of a finite 

number of its terms, we can consider a coordinate disk D in V containing the 

zeros and poles of all the an. We can also suppose, by Proposition 2.5, that  an 

is A-simple for every n E N. Hence, multiplying by z t the series }-~n~_l d log an, 

and then integrating along the boundary of D, one arrives easily, using 2.16.2, 

at the conclusion that  ~-~n~=l [ae(4~)l converges for g = 1 , . . . ,  k. 

Conversely, suppose that these series converge and that (Sn) tends to oc. The 

idea of what follows is to see that these hypotheses imply also that  there exists 

no E N such that  an is A-simple for every n > no, from which by 2.16.2 and by 

Theorem 2.16 one deduces easily the normal convergence in V ~ f oo O I~n=l O~n 

By integrating both members of 2.16.1 (with a = an) along Bl, for I = 1 , . . . ,  g, 
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and expressing the resulting equality by means of matrices, one has: 

fB~ 0 ~  

1 "'" 0 fs2Wl "'" fs2~9 
�9 . � 9  " . . , ,  * 

0 .. .  1 fB ~Zl . . .  fB ~g 

f B~ d log an 

f Bg d log an 

- fA~ d log an 

- fA. d logan  

Recall now that,  as is well known, the columns of the g • 2g matrix appearing in 

this equality are linearly independent over •, and so generate a lattice L in C 9 

(such that  Cg/L is the jacobian variety of V), and note on the other hand that 

the point of Cg defined by the first member comes close to 0 for large values of 

n. Since this can only happen if for all but possibly a finite number of values of 

n this point is 0, we obtain easily what we wanted to prove�9 | 

Remark 2.18: Up to now we have always considered a point cc E ~2 which is 

not of Weierstrass, but we want also to explain briefly how the preceding theory 

can be transcribed to the general case in which oc may be a Weierstrass point�9 

Let r l  < . . .  < rg be the Weierstrass gaps at oc, p = Pl < "'" < Pg be the 

nongaps belonging to {1 , . . . ,  2g}, and 0j be the unique holomorphic differential 

in V' with null integrals over A1 , . . . ,  A 9 and with singular part at oc equal to 

dz/z~ +1, for j E {1 , . . . , g} .  For every p C A' - P0, let fp be the normalized 

flmction defined by 

g 

(2.18.1) dlogfp = Op~ + E ~j(p)Oj, 
j - - - -1  

where (~ I (P ) , . . . ,  ~9(P)) C C g is such that  the second member of 2.18.1 has null 

integrals along B1 . . . .  , B a as well. Note the analogy with 2.5.2, and consider the 

subgroup G ~ ,  of G 0 / ) ,  generated over M*(V) by all these functions fp, and 

the field Koo formed by the quotients of finite sums of functions in G ~  with 

non-identically-zero denominator. As it is not difficult to see, these definitions 

coincide with the previous ones if oc is not a Weierstrass point (see Cutillas [2]). 

Let 5 = ~n~__l Pn be a positive infinite divisor in V ~ and, for every n E 5t, let 

fn be as the fp of above with p replaced by p~. Consider the two conditions on 

5: 
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(1) YlnCX~=l fn converges normally in 12'. 

(2) ~,~--1 z(pn) p is absolutely convergent. 

Then, reasoning as in (3)~(1)  of the proof of Theorem 2.12, one deduces easily 

that (1)~(2) .  Conversely, observe that similar arguments to those in the proof 

of Lemma 2.6, lead to the conclusion that ~j + z re plus a linear combination, 

with coefficients in C, of z pl . . . . .  z p~, has at ~ a zero of order > 2g for every 

j E {1 , . . .  ,g}, and note also that this implies the analogue of Lemma 2.7 with 

p instead of g + 1, whereupon we can obtain as in the proof of the said theorem 

that  (2)~(1)  too. Theorem 2.12 is thus generalized, and from this generalization 

one can deduce that Corollary 2.13, (an analogue of) Theorem 2.14, Theorem 

2.16 and Theorem 2.17 are also valid without necessarily supposing that co is 

not a Weierstrass point. 

3. WF-f i e ld s  

It was already explained in the Introduction what a WF-field is, but we want 

now to state formally and precisely the meaning of this concept. 

Definition 3.1: A subfield K of M(1/)  will be called a WF-field (in 17), if it 

contains M()2), and if for every positive infinite divisor 5 in pt there exists a 

Weierstrass product with factors in K associated with 5. 

It is a clear consequence of this definition, and of the generalization for compact 

Riemann surfaces of the Weierstrass factorization theorem (mentioned in the 

Introduction), that M(lY') is a WF-field in )2', and we also know (Theorem 1.2) 

that  K ~  is another example of a WF-field in ) / .  

An elementary but useful observation about this type of field is the following: 

PROPOSITION 3.2: A subfield K of M(l) ')  is a WF-field if  and only i f  for every 

sequence (Sn) of finite divisors in 1/~ which tends to oo, there exists a sequence of 

functions (f~) in K,  such that for every n C N the divisor of f~ is 5~, and such 

that I-[,~=1 f~ converges normally in V'. 

From now on, for every subfield K of M(V~), H(K)  will be the subgroup of 

0(1/~) formed by the functions 7 such that e r E K. We shall soon see that  these 

associated groups are fundamental in the theory of WF-fields. 

LEMMA 3.3: Let K be a WF-field, and (an) be a sequence of nonzero functions 

of A(V~), which converges uniformly in every compact subset of 1/~ to e ~, with 
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T E O(V'). Then there is a sequence (h,~) in H(K) such that [In~=l ane h~ 

converges normally in 1; ~. 

Proof: Since ((~n) converges uniformly in compact subsets of V' to an exponen- 

tial function, its sequence of divisors (~n) tends to oc and we can assume, by 

getting rid if necessary of a finite number of them, that all the an are A-simple. 

By Proposition 3.2, there exists a sequence of functions f . ,  in K,  such that  the 

divisor of f~ is the restriction of 6~ to 12 ~ for every n E R, and such that  l-I~__l f~ 

converges normally in V t, while by Proposition 2.5 it can be also supposed, with- 

out loss of generality, that fn is A-simple, for every n E N. Therefore, being oz n 

and f~ A-simple functions having the same divisor (in 1; ~) for every n E N, their 

quotient must be an exponential belonging to K. I 

In the following two definitions we explain some more useful terminology. The 

concept of W-field appearing in the second was already mentioned in the Intro- 

duction, and was introduced and investigated in Cutillas [2]. 

Definition 3.4: A generalized Weierstrass product in )2 ~ will be an infinite 

product, normally convergent in P',  of the type I-In'=1 f~, where fn E 0(•') 

has either no zero in 1; ~ or a simple zero at a unique point of 1; ~, for every n E N. 

A generalized Weierstrass product with factors in a subfield K of M ( P  ~) will 

be a product as above, with all the f~ belonging to K. 

Definition 3.5: Let K be a subfield of M(Y~). We shall say that it verifies the 

Weierstrass property (in ~ )  or, in short, that  it is a W-field, if it contains M(Y) 

and if for every finite divisor (~ in 1; ~ there is a function in K whose divisor is 5. 

Note that the class of W-fields contains that of WF-fields. Since all W-fields 

generated by functions with finite divisor were determined in Cutillas [2], we are 

interested in founding possible additional properties verified only by WF-fields: 

for instance, those appearing in the following: 

THEOREM 3.6: For a subfield K of M(~'), containing M(F),  the following 

conditions are equivalent: 

(1) K is a WF-field. 

(2) K is a W-field and H(K) is a dense subgroup of O(P'). 

(3) Every function with infinite divisor in O(1; ~) is a Weierstrass product with 

factors in K. 
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(4) Every function in O(V') is a generalized Weierstrass product with factors 

in K. 

Proof: (1)=>(2). Let r be any function in O(F'), and let (a,~) be a sequence 

of nonzero functions in A(V') converging uniformly in every compact subset of 

V' to e ~ (Theorem 1.1). By Lemma 3.3, there exists a sequence (hn) in H(K) 
e~ h such that l-[n=t c~e ~ converges normally in V', whence we deduce that (C~ne h~ ) 

converges uniformly to 1 in every compact subset of V', from which it results 

easily that r is the uniform limit in compact subsets of V' of ( -ha + 2rcikn) for 

some sequence of integers (ks). 

(2 )o(1) .  Let 6 = ~n~=l pn be a positive infinite divisor in F',  and (Vk) be a 

sequence of coordinate disks in V with the radii of the z(Vk) tending to 0, and 

such that all the Pn are in 1/'1 and none of them is in [.Jk~__l OVk. By reordering 

the sequence (Pn) and replacing, if necessary, (Vk) by some subsequence, we can 

suppose that P l , . - . ,Pn l  E V1 - V2, and that for k C N, Pnk+l . . . . .  P,~k+~ E 

Vk+l - Vk+2, for some increasing sequence (nk) in N. Given any n C N, let 

k E g + be such that nk + 1 < n < nk+l, where we are taking nk = 0 if k = 0 and 

nk as above if k C N, and let fn C K be a A-simple function having p~ as divisor 

in )2'. Then, in some neighbourhood of 12-Vk+l, there is a uniform branch log fn 

of the logarithm of f,~ and so, by Theorem 1.1, there exists h~ E H(K)  such that  

2 - k  
[] l o g f n  + h n l l V - D k + l  < 

n k + l  -- nk  

whence one easily obtains that I-In~__x f,~e h" converges normally in Y'. 

(1)=*(3). Let f be a holomorphic function in Y' with infinite divisor 5 = 

En~ Pn, and let l--[~=1 f~ be a Weierstrass product associated with 5 with factors 

in K. Then by multiplying, if necessary, f l  by a suitable holomorphic function 

of K without zeros in l?', we can suppose further that f .  (l-[n~__l f~)-a  = e~ ' for 

some 7 E O(12'). Now, take into account that H(K) is dense in O(12') in order to 

choose a sequence (rn), in H(K),  such that ~n~--t 7-,~ converges normally in 1;' to 

T, and note that this implies that  YInC~ 1 fn e'rr" is also a Weierstrass product with 

factors in K associated with 6, and that one has f = Hn~176 f,~e "- . 

(3)~(1)  Easy. 

(1)=~(4). Use that H(K) is dense in O(12') as in the proof of (1)~(3) .  

(4)=>(1). Given a divisor 5 in 12', consider a fimction f E O(12') with divisor 

5, and a generalized Weierstrass product 1-I~_l f~, with factors in K,  convergent 
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to f .  Then, since 1-]n~__l fn is normally convergent in 1;', the same must be true 

for 1-Ie~l fn~, for every subsequence ( f~ )  of (f~), from which results the desired 

conclusion. | 

A natural question about WF-fields which one may pose is: does there exist 

any minimal WF-field in 1;'? Condition (2) of Theorem 3.6 suggests that  the 

answer is negative, and the following corollary shows that in fact it is so. 

COROLLARY 3.7: There is no minimal  WF-field in 1;'. 

Proof: By Theorem 3.6, it suffices to see that there is no minimal dense subgroup 

of O(l;'). Note, first, that if G is a dense subgroup of 0(1;')  then, for every p 6 N, 

pG is also a dense subgroup of O(l;'), and therefore, a minimal dense subgroup 

of O(1;') would be a minimal dense Q-vector subspace of O(1;') too. Taking this 

into account, we can apply a standard argument which we include below for the 

sake of completeness. If there would exist such a Q-vector subspace H of O(1;'), 

we could consider a sequence (h~) of functions in H, linearly independent over Q 

and such that [[h~[[Q~ _< 1 for every n 6 N, where (Q~) is an exhaustive sequence 

of compacts in 1;' (in the standard sense). Being H minimal, all its Q-hyperplanes 

would be closed and so (see, for instance, Schaefer [8]), all Q-linear forms in H 

would be continuous. In particular, a Q-linear form r in H such that r = n 

for every n G N would be continuous and so, for some compact subset Q of 1;' 

and some constant C > 0, we would have n <_ C[[hnl[Q for every n E N, which is 

impossible since Q is contained in all but a finite number of the Q~. | 

Theorem 3.6, together with a result in Cutillas [2], permits us to determine all 

WF-fields in 1;' generated by functions with finite divisor, by means of certain 

group homomorphisms. That paper presented a natural way of associating every 

W-field K in 1;' with a group homomorphism CK: C ~ --* O ( 1 ; ' ) / H ( K ) ,  which we 

recall briefly now, in two steps: 

(1) Let J (A)  be the quotient group of the group of finite divisors with degree 0 

supported in A, by the subgroup of divisors of A-simple meromorphic functions 

in 1;. Then, the mapping from J(A) into C ~ such that the image of the quotient 

class, in J(A),  of the divisor ~ 1  n~(ai - c~), with ai 6 A' for i = 1 , . . . ,  r, is: 

Z ni{gaioo, �9 �9 �9 ni~a~oo , 
1 i = 1  g i = 1  

is well defined and is in fact a group isomorphism from J(A) onto C 9 . 
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(2) For every a E A' there exists a A-simple fa E/x ~, with divisor a in Y'. Let 

/~1,. �9 E C be such that dlog fa 0 g �9 ~- aoz + E j . ~ . I  /~jOj -~- d h a ,  where h~ E O(Y') 

and the notation is as in Section 2. Then, the correspondence a - cc --* ha, 

where ha is the quotient class of ha in O(F')/H(K), can be extended to an 

homomorphism, from the group of finite divisors with degree 0 supported in 

A onto O(V')/H(K), which is zero on the subgroup of divisors of A-simple 

meromorphic functions in P, and so defines an homomorphism ~/'K from J(A)  

into O(N')/H(K), which by (1) can be thought of as defined on C ~. 

The above said result in Cutillas [2] is that  the map K -~ ~K is a bijection 

of the set of all W-fields in Y t generated by functions with finite divisor, with the 

set of all homomorphisms r from C 9 into any possible quotient group O(F')/H 

of O(P t) by a subgroup H containing C (this subgroup coinciding with H(K) if 

r = CK). Note finally that every W-field in P' contains the W-field generated 

by its functions with finite divisor, and that the analogous assertion is true for 

WF-fields. 

COROLLARY 3.8: The restriction of ~ to the set of WF-fields in V ~ generated by 

functions with finite divisor is a bijection with the set of all homomorphisms 

from C g into any possible quotient group O(V')/H of O(V t) by a dense subgroup 

H containing C (this subgroup coinciding with H(K), if r = ~(K) for some 

WF-field K in Vt). 

Remark 3.9: Throughout this section, V ~ has been the complementary in V of 

a unique point c~. If, instead of this, V t is of the form V - S, for some nonvoid 

finite subset S of V, we can define the concept of WF-field in V' in a similar 

way. M(V t) and the subfield, analogous to K ~ ,  generated by the functions with 

polynomic exponential singularities at the points of S, are likewise examples of 

WF-fields in V t. The concepts of Weierstrass product and generalized Weierstrass 

product can also be easily generalized to this case and, by using the same type of 

arguments, analogues of Theorem 3.6 and Corollaries 3.7 and 3.8 can be proved. 

ACKNOWLEDGEMENT: This paper is based on part of the Doctoral Thesis of 

the second-named author, which was directed by the first-named author. Both 

authors thank Professor Mufioz Diaz J. (Department of Pure and Applied Math- 

ematics, University of Salamanca), for helping them to prove one of the above 

results, and for some valuable conversations related to this paper�9 



Vol. 101, 1997 WEIERSTRASS FACTORIZATIONS 227 

References 

[1] H. F. Baker, Abel's Theorem and the Allied Theory Including the Theory of Theta 

Functions, Cambridge University Press, 1897. 

[2] P. Cutillas Ripoll, Construction of certain function fields associated with a compact 

Riemann surface, American Journal of Mathematics 106 (1984), 1423-1450. 

[3] H. M. Farkas and I. Kra, Riemann Surfaces, Springer, Berlin, 1980. 

[4] R. C. Gunning, Lectures on Riemann surfaces. Jacobi varieties, Princeton 

Mathematical Notes, 1972. 

[5] P. Gfinther, t)ber die eindeutigen funktionen yon zwei dutch eine algebraische 

gleichung verbundenen ver~nderlichen, Crelle 109 (1892), 199-212. 

[6] A. Pietsch, Nuclear Locally Convex Spaces, Springer, Berlin, 1972. 

[7] H. L. Royden, Function theory on compact Riemann surfaces, Journal d'Analyse 

Mathdmatique 18 (1967), 275-327. 

[8] H. H. Schaefer, Topological Vector Spaces, Springer, Berlin, 1971. 


